Optimal Sequential Exploration: A Binary Learning Model
نویسندگان
چکیده
I this paper, we develop a practical and flexible framework for evaluating sequential exploration strategies in the case where the exploration prospects are dependent. Our interest in this problem was motivated by an oil exploration problem, and our approach begins with marginal assessments for each prospect (e.g., what is the probability that the well is wet?) and pairwise assessments of the dependence between prospects (e.g., what is the probability that both wells i and j are wet?). We then use information-theoretic methods to construct a full joint distribution for all outcomes from these marginal and pairwise assessments. This joint distribution is straightforward to calculate, has many nice properties, and appears to provide an accurate approximation for distributions likely to be encountered in practice. Given this joint probability distribution, we determine an optimal drilling strategy using an efficient dynamic programming model. We illustrate these techniques with an oil exploration example and study how dependence and risk aversion affect the optimal drilling strategies. The information-theory-based techniques for constructing joint distributions and dynamic programming model for determining optimal exploration strategies could be used together or separately in many other applications.
منابع مشابه
Exponentiated Gradient Exploration for Active Learning
Active learning strategies respond to the costly labeling task in a supervised classification by selecting the most useful unlabeled examples in training a predictive model. Many conventional active learning algorithms focus on refining the decision boundary, rather than exploring new regions that can be more informative. In this setting, we propose a sequential algorithm named exponentiated gr...
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کاملPsychological Models of Human and Optimal Performance in Bandit Problems Action Editor: Andrew Howes
In bandit problems, a decision-maker must choose between a set of alternatives, each of which has a fixed but unknown rate of reward, to maximize their total number of rewards over a sequence of trials. Performing well in these problems requires balancing the need to search for highly-rewarding alternatives, with the need to capitalize on those alternatives already known to be reasonably good. ...
متن کاملPsychological models of human and optimal performance in bandit problems
In bandit problems, a decision-maker must choose between a set of alternatives, each of which has a fixed but unknown rate of reward, to maximize their total number of rewards over a sequence of trials. Performing well in these problems requires balancing the need to search for highly-rewarding alternatives, with the need to capitalize on those alternatives already known to be reasonably good. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Decision Analysis
دوره 3 شماره
صفحات -
تاریخ انتشار 2006